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Abstract 

A realistic molecular dynamics calculation for naph- 
thalene is presented and a comparison is made 
between the simulation and the crystallographic data. 
The molecular dynamics sample consists of 4096 
molecules arranged in a volume with cyclic boundary 
conditions, each molecule being associated with one 
processing element of the ICL DAP computer. The 
potential functions used are the same as those used 
for lattice dynamics, and are developed from atom- 
atom 6-exp functions. A comparison with a lattice 
dynamical result establishes the correctness of the 
program. Temperature is introduced in the usual 
molecular dynamics way, resulting in a true modelling 
of anharmonic behaviour. The calculation proceeds 
at zero pressure throughout, yielding the temperature 
variation of the crystalline unit cell, the mean 
molecular orientation and the rigid-body thermal 
vibration tensors T and L. These are compared with 
the recently reported results measured by neutron 
scattering from powder samples and analysed through 
constrained refinements. The variation of unit-cell 
volume with temperature is particularly close to the 
experimental result, though discrepancies begin to be 
significant in measurements involving the orienta- 
tional behaviour of the molecules. 

1. Introduction 
In the early days of crystallography the main 
emphasis in structure determination was simply to 
solve the crystal structure, though even in those days 
there was considerable interest in the study of the 
thermal diffuse scattering. Nowadays some crystal- 
lographers are not satisfied unless they have studied 
the temperature variation of their structure, as this 
can yield new and useful information. Temperature 
is experimentally the most easily controlled state vari- 
able, though it is the most difficult variable to intro- 
duce into any model calculation. Only in recent years 
has it been possible to introduce temperature in any 
acceptable way as it is only recently that we have had 
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enough computational resource to be able to perform 
extensive molecular dynamics calculations. 

The work on the dynamics of crystalline naph- 
thalene has so far been restricted to lattice dynamical 
work (Pawley, 1967, 1972; Mackenzie, Pawley & 
Dietrich, 1977; Schmelzer et al., 1979, 1981; Nat- 
kaniec et al., 1980; Dorner et al., 1981), both calcula- 
tions and measurements. The calculations are all 
based on the harmonic approximation, which makes 
the assumption that the molecular displacements are 
so small that anharmonic effects can be ignored. 
However, the potential function that is developed for 
these model calculations is a sum over a number of 
highly anharmonic functions, and so should be most 
appropriate for any calculation which treats the 
anharmonicity correctly. The measurements quoted 
above and the various structural studies (see Baharie 
& Pawley, 1982) contain some results made at various 
temperatures, giving excellent experimental results 
for comparison with model calculations. All this 
experimental work and the associated calculations 
have been done with fully deuterated naphthalene, 
and we continue to make this choice in these simula- 
tions. 

For a system where anharmonicity is not enormous, 
it is possible to tackle the theoretical problem using 
Green-function (Maradudin & Fein, 1962) or Hamil- 
tonian perturbation methods (Wallace, 1966). At low 
temperatures and for low frequencies the phonon 
anharmonicity is dominated by three- and four- 
phonon scattering processes. The scattering cross sec- 
tions for such processes, and the resulting anharmonic 
frequency shifts and linewidths have been computed 
analytically for crystalline naphthalene in the tem- 
perature range below 68 K (Della Valle, Fracassi, 
Righini & Califano, 1983). The theory agrees reason- 
ably well with the experimental data at low tem- 
peratures, but some discrepancies develop at higher 
temperatures. Such discrepancies would doubtless be 
reduced with the inclusion of fifth- and higher-order 
terms in the perturbation series. However, such addi- 
tional terms are increasingly more complex and the 
fourth-order term appears to be the practical limit. 
Thus, such methods cannot give results in the regime 
of great interest near to a change of phase such as 
melting. 
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The simplest form of model calculation in which 
temperature can properly be included and where a 
potential function is available is certainly molecular 
dynamics. For naphthalene such calculations have 
not been done until now, mainly due to the enormous 
amount of computation that is demanded by the size 
of the molecule. In the present work we make use of 
the highly parallel computer, the I C L D A P  (dis- 
tributed array processor), which is an array of 4096 
processing elements, PEs, which function simul- 
taneously. Each PE contains the information pertain- 
ing to one molecule, and so the smallest sample that 
the computer can use without degrading its efficiency 
is 4096. This is far greater than the number of 
molecules which are usually used in molecular 
dynamics studies, and as the molecule itself is much 
larger than most others used in a simulation of this 
kind, the present result represents a very considerable 
extension of the molecular dynamics field. The reader 
who wishes to know more about the DAP computer 
should consult the work of Gostick (1979) and the 
book by Hockney & Jesshope (1981), the details given 
later are simply those necessary for an understanding 
of the present simulation. 

2. The molecular dynamics sample 

Each of the PEs of the DAP contains information 
about one molecule, and the first calculation to be 
made in the simulation requires the distances between 
the atoms of one molecule and those of its neighbours 
to be found. Thus, each PE has to have access to the 
information in the PE which represents the neighbour, 
and with this information it can calculate all the 
intermolecular interatomic distances. These are 
required for the calculation of the forces between the 
various atoms. These forces are given by differentiat- 
ing the total potential, assuming that the total poten- 
tial is given by a sum over all atom-atom contacts of 
the form 

V(r) = - A r  -6 + B exp ( -  Cr). ( l ) 

The constants used in this equation are those given 
by Williams (1967), Kitaigorodskii (1966) and 
Mackenzie, Pawley & Dietrich (1977), and are shown 
in Table 1. These will be referred to as W, K and M, 
respectively, in § 6 and in the figures. 

The architecture of the DAP is such that the most 
convenient way of packing the molecules into the 
sample is by using a skew periodic boundary scheme. 
The PEs are arranged on a 64 x 64 lattice, with built-in 
cyclic boundary conditions, making any calculation 
in two dimensions very easy to implement. Each PE 
is directly connected to its four nearest neighbours, 
and can pass information to them or to any other PE 
via these four neighbours. To implement a three- 
dimensional sample it is possible to use the array as 

Table 1. Parameters for  the intermolecular potential 

V(r)  = - A r  -6 + B exp ( -  Cr) 

is the form of the atom-atom potential, with the following parameter values. 
Units are converted from those given in the references, and are J m6/bond 
(x 10s°) for ,4_, J/bond (x 1020) fo r  B and nm for C. The references are 
W (Williams, 1967), K (Kitaigorodskii, 1966), M (Mackenzie, Pawley & 
Dietrich, 1977). 

A B C 
C-C C-D D-D C-C C-D D-D C-C C-D D-D 

W 394 86 18 58122 6092 1844 0.360 0.367 0.374 
K 248 107 39 29189 29189 29189 0.358 0.412 0.486 
M 256 100 35 22055 22025 21997 0.333 0.393 0-478 

if it were a one-dimensional cyclic string, the skew 
conditions in three dimensions arising from the use 
of this string. The best way of explaining this is to 
describe the particular implementation that we have 
used for naphthalene. 

The sample consists of 4096 molecules oriented in 
two possible symmetry-related ways and placed on 
centres of symmetry in the monoclinic space group 
P 2 J a .  We choose to call the two orientations 'even' 
and 'odd',  and there must be equal numbers of each 
orientation in the sample. The molecules are arranged 
on the cyclic string so that evens and odds alternate, 
and quite clearly this fits on to the string perfectly. 
There is one direction in the naphthalene structure 
where one can find a straight line which goes alter- 
nately through the centres of even and odd molecules 
such that one molecule is a nearest neighbour to the 
next. This is the I110] direction, and we choose this 
for the basis of the sample. In Fig. 1 the molecules 
0, 1, 2 are arranged along this direction where the 
molecule labelled 0 could also be described as 
molecule 4096. Thus, in operation when PE number 
1 finds the distances involving the molecule number 
2, PE number 2 finds the equivalent information 
involving molecule number 3 simultaneously. The 
cyclic string property means that PE number 4096 
simultaneously finds the information involving 
molecule number 1. 

The three-dimensional nature of the packing is 
achieved as can be seen from the rest of Fig. 1. Even 

Fig. 1. The  number ing  o f  the molecules in the unit  cell o f  naph-  
thalene.  The  numbers  m and  n can be chosen to suit the problem,  
but  must  be even. The  number ing  establishes the relative posi t ion 
of  the molecular  in format ion  in the compute r  store. 
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numbers are chosen for m and n (e.g. m = 30, n = 300), 
and then the vector between molecule i and molecule 
i + m is the crystal lattice vector b, and between i and 
i + n is e. The lattice vector a is thus between molecule 
i and molecule i - m  +2. All these molecule indices 
are modulo 4096, and i takes all values in the range 
1-4096. The sample built up in this way fills space 
through the customary cyclic repetition, and although 
the unit sample is of a peculiar shape this does not 
have any disadvantages except perhaps in the analysis 
for phonon modes which has to be done in the 
reciprocal space (Pawley & Thomas, 1982). 

3. Molecular dynamics 

Thermal expansion is one of the more immediate 
consequences of anharmonicity. In cubic crystals the 
expansion tensor is isotropic and it is only necessary 
to adjust the lattice spacing to maintain a constant 
(usually zero) pressure. This is the procedure adopted 
by Pawley & Thomas (1982) in the simulation of SF6, 
but is not adequate for the simulation of less- 
symmetric crystals. For a realistic simulation of a 
general system it is necessary to adjust all the lattice 
parameters to give zero stress in the sample, and one 
method for implementing this has been suggested by 
Parrinello & Rahman (1980). The method we have 
adopted allows the system to reach an equivalent 
equilibrium configuration; both methods involve 
approximations which become unimportant  when the 
system equilibrates, and so there is no divergence 
between the two methods during the periods where 
observations are being made. 

In our simulation the molecules are assumed to 
behave as rigid units under interactions with their 
near neighbours. The dynamical equations have been 
solved using Beeman's (1976) algorithm, while zero 
pressure has been maintained by changing the crys- 
tallographic unit cell so as to approach a free-energy 
minimum. Time stepping and strain relief have been 
alternated, readjusting the structure after a chosen 
number of dynamical time steps. This method there- 
fore allows computational savings to be made when 
the system has reached an equilibrium, as the strain 
relief can then become an occasional step. Although 
the method of strain relief should not affect the equili- 
brated configuration, the details of the method are 
now outlined in brief. 

In a system undergoing a homogeneous strain, the 
new positions of atoms are related to the old through 
the strain tensor uu: 

r ;  = ri + t tur  j .  (2) 

If the strain is isotropic, r ' =  (1 + u)r, and the volume 
V changes 

V ' =  V + d V =  V+3uV. (3) 

Such a strain involves a change in internal energy 

d U =  T d S - p  d V =  T d S - 3 u p V  (4) 

in the isotropic case, or (Landau & Lifshitz, 1959) 

d U = T dS - tr 0 du U, (5) 

where cr U is the stress tensor. In the isotropic case 

o- U = p V80. (6) 

In thermodynamic terms, with the free energy F = 
U -  TS we have 

o- 0 . . . .  (7) 
s T 

The condition of constant (say zero) pressure is clearly 
that for a zero stress tensor. Ideally one would use 
the free-energy minimization to achieve this, but as 
the internal energy is more accessible we seek to 
minimize this quantity and accept that the entropy 
may change in the minimization search. This change 
should be small if the system is not near to a transition, 
and the effect of neglecting this change will be that 
the minimization search will be somewhat slower than 
otherwise. 

The internal energy is a sum of a kinetic and a 
potential term 

6N 
U = U K + U p -  i ~ Mk(12k +½ E ~o[r(mn)], (8)  

k=l  mn 

Mk is a mass term associated with coordinate qk, 
r(mn) is the distance between atom m and atom n, 
and N is the total number of molecules, which have 
six degrees of freedom each. For the kinetic contribu- 
tion we take an isotropic strain 

ouK 
- - -  pV~,j, (9) 
ou U 

obtaining the pressure via the virial theorem (Kittel, 
1958), 

a l ~ - ~ ( ~  Ork(mn) &p I p V =  N k T - - g  rk(mn) . (10) 
k=l  

For the potential contribution, 

Ou U - 2 Ori(mn) ~(mn) , (11) 

as we have from the definition of u U 

Ork/ OUij = ¢~ik 5. ( 1 2 )  

We thus have all the expressions needed for the 
strain tensor via the internal energy. This energy is 
minimized by a Newton-Raphson iterative steepest- 
descent method (see McGhee, 1967), giving the strain 
required to relieve the stress. At any one moment  it 
is not necessary to iterate to completion as the 
approximations involved will cause the stress to vary 
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during subsequent steps, and it becomes most advan- 
tageous to interleave the Newton-Raphson iterations 
with the molecular dynamics time steps in such a way 
that the iterations have a diminishing role when the 
system equilibrates. 

The interactions required for the molecular 
dynamics time step have been computed by summing 
over the 14 neighbour molecules inside a 9/~ range, 
approximating the remaining long-range part by an 
integral over a homogeneous medium. The free energy 
is differentiated numerically with respect to an 
arbitrary strain and the best strain in a parabolic 
approximation along the steepest direction is applied 
to the lattice. When the strain is completely relaxed 
the lattice symmetry fluctuates away from the mono- 
clinic symmetry, and so a constraint is applied to 
keep the appropriate off-diagonal elements of the 
strain to zero. In the method just outlined it is easy 
to simulate any required crystallographic symmetry, 
though it is important that the fluctuations from the 
true symmetry that result from not having the con- 
straint are such that the true symmetry is the time 
average. If it were not so this would be evidence for 
a structural phase transition which, in the present 
case, is not expected. The constraints applied to 
maintain the appropriate crystallographic symmetry 
could also be applied in the method of Parrinello & 
Rahman (1980). 

Initially the system is set in motion using random 
velocities which correspond to the desired tem- 
perature. Correction for incorrect pressure is impor- 
tant at this stage, especially as the temperature needs 
constant readjustment as no randomly selected set of 
velocities (including angular velocities) can be expec- 
ted to have the distribution of an equilibrated system. 
A number of time steps are therefore essential for 
equilibration at the chosen temperature. The time step 
chosen was 0.025 ps, a value small enough that energy 
non-conservation was not appreciable but large 
enough that the simulation became feasible. A clear 
statement of the time needed for equilibration to take 
place is not easy to give as each configuration was 
developed from an earlier configuration equilibrated 
either at a slightly different temperature or for a 
different potential function. However, in a particular 
case the change of temperature from 150 to 200 K 
showed a barely noticeable drift in the system para- 
meters after 2.0 ps. This rather rapid equilibration is 
indicative of considerable anharmonicity, typical of 
a molecular crystal. 

Estimation of the temperature is done by calculat- 
ing the total kinetic energy and equating this to 3 NkT 
(N = 4096). If the translational and rotational kinetic 
energies are used independently to estimate tem- 
perature, which has sometimes been done in gas- and 
liquid-phase simulations, the result from the rota- 
tional motion is very roughly 100/T% larger (for T 
from 25 to 300 K) than that from the translational 

motion. This is consistent with the fact that a phonon 
description of the system becomes poorer with 
increasing temperature, as more anharmonicity is 
being introduced. At low temperatures the phonons 
are almost independent, and when this is true it is 
the mean phonon kinetic energy which should be 
equated to ~kT, and as each phonon combines transla- 
tional and rotational motion these simple motions 
cannot be considered independently. Such a simple 
division of the energy becomes progressively more 
valid as the temperature increases. 

4. Quaternions 

The angular motion of the molecules is treated using 
the quaternion formulation which has become accep- 
ted as the best method for molecular dynamics simu- 
lations (Evans, 1977). The great advantages of this 
formalism over the use of Eulerian angles are that 
the variable coordinates all behave in a similar fashion 
and that there is no possibility of singular behaviour. 
These advantages far outweigh the inconvenience of 
having four coordinates when there are only three 
degrees of freedom for a general rotation. The four 
coordinates have therefore to be constrained to be 
the coordinates of a unit vector in four dimensions 
or, in other words, to define a general point on the 
surface of a unit four-dimensional hypersphere. All 
four coordinates are varied according to the 
molecular dynamics algorithm for stepping in time 
and are then normalised to unity after each step. The 
basic equations for the use of quaternions are given 
by Du Val (1964), and some useful symmetry proper- 
ties are presented by Pawley (1981). Only those 
properties that are necessary for the present paper 
will now be given. 

The basic representation of a molecule is given in 
the principal-axis system. Let the quaternion that 
represents the rotation of such a standard molecule 
into the crystal orthogonal coordinate system to create 
an odd molecule of the sample be 

q = (qo; ql, q2, q3)- (13) 

Here we choose ql, q2, q3 to be the coordinates for 
the imaginary prime (Du Val, 1964). A quaternion 
representing an even molecule is taken as q '=  
(qr; q], q[, q~), and this is converted to (qo; q~, q2, q3) 
by rotation about the monoclinic diad axis as follows. 

(qo; q~, q2, q3)= (0; 0, 1, 0)(q~; q~, q~, q~) 

= (-q~; q~, q~,-q~). (14) 

This can be checked using the rules in the cited 
references, but is easily seen to agree with the basic 
definition associating the quaternion with a rotation 
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matrix, thus: 

(qo; ql, q2, q3) 

[q2+q2_q22_q2 2(qtq2-q3qo) 2(qlq3+q2qo)  1 
----- ~ 2(qlq2+qaqo) q2o-q2+q22-q2 2(q2q3-qlqo) 1. 

\ 2(qlqa-q2qo) 2(q2qa+qlqo) q2_q2_q2+q2] 

(15) 

After transforming the quaternions for the even 
molecules to coincide on average with the odd- 
molecule quaternions, the mean values can be calcu- 
lated 

Qo=(qo) Ql=(q l )  Q2=(q2) Qa=(q3), 

the averages being taken over all the 4096 molecules 
in the sample. These values are equivalent to a set of 
Eulerian angles (~, 0, gt) through 

Qo = cos 0 / 2  cos (gr + ~ ) / 2  

Ql = - s in  0 / 2  cos ( ~ -  ~ ) / 2  

02 = sin @/2 sin (gt _ ~ ) /2  

Q3 = -cos  0 / 2  sin ( ~  + qb)/2. (16) 

These Eulerian angles are as defined and used in the 
refinement of the powder diffraction data of Baharie 
& Pawley (1982), and the results of these experiments 
will be compared with the molecular dynamics results 
in Fig. 5. 

5. The configurational averages 

The molecular dynamics calculations give more than 
just the temperature variation of the mean molecular 
orientation. The second moments of the distribution 
of quaternions is closely related to the mean-square 
librational tensor, usually referred to as L. The first 
step towards getting L involves finding the quaternion 
p for each molecule which gives the difference 
between the corresponding q and the mean of q, 
namely Q. For this the inverse of Q is used as follows. 

p = q( Qo; -Q, ,  -Q2, -Q3) (17) 

and as p is a small quaternion 

p- - (1 ;  O1/2, 02/2, O3/2), (18) 

where Oi are small angular rotations about the crystal 
orthogonal axes, which give directly 

L~sr = ( o, Oj). (19) 

Thus all the averages (qit b) are found, from which all 
the tensor components of L can be found: 
/,1~ i, cr 2 2 2 2 2 2 

= + ( q l ) Q o  + ( q 2 ) Q 3  + ( q 3 ) Q 2  ~,4] a--,l , (q2o)Q2 

- 2{(qoql)QoQt -(qoq2)Ql Q3 + (qoq3)Q~ Q2 

+ ( q l q2) Qo Q3 - ( q l q3) Qo Q2 + ( q2 q3) QE Q3 } 

l c r  (~)L23 [(q2)-(q2)]Q2Q3 +[(q~)-(q2)]QoQz 

+ (qoqt)(Q2 _ Q23) + (q2qa)(Q~ - Q2) 

+ [(qlq2) +(qoq3)](Q, Q3- QoQ2) 

+[(q, q3)-(qoq2)](QlQ2 + QoQa)- (20) 

The advantage of these equations is that all the 
quaternion moments (qiqj) can be found during the 
simulation runs independently of the evaluation of 
the mean quaternion Q, and the calculation can be 
run in stages until sufficient statistics have been collec- 
ted. The results obtained in these simulations have 
been taken at 64 steps from fully equilibrated runs. 
This is clearly not a sampling of independent con- 
figurations, but such a condition is not necessary for 
the quantities we are here measuring. The results are 
presented and discussed in the next section, where 
the librational tensor in molecular coordinates, L re°l, 
is also considered. This tensor is given by a different 
combination of quaternion moments: 

(l)Z~l°l = (q~)Q~ +(q~)Q~ +(q~)Q] +(q])Q~ 

-2{(qoq,)QoQ1 +(qoq2)QlQ3-(qoqa)QiQ2 

( 1,~ g m o l  
47 a '23  m 

-(q,  q2)QoQ3 +(qlq3)QoQ2 +(q2q3)Q2Q3} 
[(q2) _ ( qE)]Q2Q3 _ [(q22) _ ( q2)]QoQl 

_ ( qoql)( Q2 _ Q2) + ( q2q3)( Q20_ Q2) 

+[(q, q2)-(qoq3)](Q, Q3 + QoQz) 

+[(qlq3)+(qoq2)](Q, Q2-QoQ3). (21) 

Presenting this equation emphasises the fact that the 
important measures to be made are of the funda- 
mental correlation functions, from which various 
quantities can be constructed when the simulation is 
completed. 

6. Simulation results 

A program was written to perform the simulation 
described above, and it was thought to be wise to 
devise a test for it. This was furnished by an indepen- 
dent lattice-dynamical calculation with the same 
potential function, giving eigenvectors for modes of 
any chosen wavelength. One mode at 1-54 THz at the 
F point (infinite wavelength) corresponded to almost 
pure libration about the major inertia axis and so we 
set up the molecular dynamics sample with molecules 
displaced about their major axes all by equal amounts. 
The simulation then produced the variation of this 
displacement as a function of time as shown in Fig. 
2. Although this figure shows contamination from 
other F modes, the dominant mode shows an oscilla- 
tion of the correct frequency, substantiating, the 
accuracy of the program. A full analysis of the phonon 
spectrum, however, is beyond the scope of the present 
paper as it requires a far greater amount of computa- 
tion, but it is nevertheless now entirely feasible. 
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The clearest indication of the existence of anhar- 
monicity in crystal systems is given by thermal 
expansion. Our first task is therefore to investigate 
the variation of unit-cell volume and shape with tem- 
perature. We have no reason to expect a priori that 
the simulation will yield a result which mirrors reality 
in any way for the anharmonic phenomena, although 
the potential functions used have been fitted to a wide 
variety of data on the assumption that a universal 
interaction function actually exists. The results will 
be presented in terms of diagrams, in which results 
for the three different potential functions will be 
presented. 

The variation of the unit-cell volume with tem- 
perature is shown in Fig. 3. This includes the experi- 
mental result E, taken from the powder neutron 
diffraction study of naphthalene-d8 by Baharie & 
Pawley (1982). The experimental curve has been 
extrapolated to 353.3 K, the melting temperature of 
the material (Sherwood, 1983). The curves for W and 
K follow experiment very faithfully, at approximately 
1.5% excess volume. The experimental non-linearity 
at very low temperatures is caused by the zero-point 
motion which is not negligible below the Debye tem- 
perature of roughly 100 K; there is no way in which 
this effect can be included in a classical computer 
simulation and therefore the calculation shows a more 
rapid expansion than experiment at low temperatures. 

Within the temperature range of the solid it is clear 
that potential M produces too rapidly an increasing 
volume. This is expected to be caused by the fact that 
the potential was found by a fitting to the phonon 
measurements made at liquid-nitrogen temperatures, 
not near absolute zero. The configurations for M, 
being the first set fully equilibrated, were used as 
starting configurations for W and then W were used 
to initiate K at a given temperature. Above 325 K this 
led to a peculiar artefact of the simulation which 
might be related in some way to melting as the ampli- 
tude of motion in this temperature region became so 
large that some important new intermolecular interac- 
tions were being omitted. This is indicative of a prob- 
lem we face on DAP architecture compute r s -  if a 
rare interaction is sometimes needed in the calcula- 

tion then this interaction has to be included for the 
whole of the system ideally for all of the time, and 
the consequent computational demand increases dis- 
proportionately. 

These arguments suggest that M predicts melting 
at <300 K, W and K somewhere about 325 K, suggest- 
ing that W or K are very appropriate potential func- 
tions for naphthalene simulations. We need to look 
at other phenomena in order to decide which is the 
better, although lattice dynamical studies favour W. 

Fig. 4 shows the variation of the unit-cell constants 
with temperature for the W potential function. This 
should be compared with the experimental result of 
Baharie & Pawley (1982). The closest agreement 
between the unit-cell lengths and experiment is given 
by the M potential (results not presented), but the 
monoclinic angle does not agree well, giving a poor 
comparison with the total cell volume. For W (and 
to some extent K) the monoclinic angle counteracts 
the cell-length discrepancies, but shows considerably 
more temperature variation than exists in the natural 
state. Thus, W gives rise to a very acceptable 
molecular volume but does not fully describe the 
orientational forces. 

The orientation of the molecule in the crystal can 
be described either in terms of quaternions or Euler 

V 
(A) 

400I M 

$ 

Fig. 2. Variation of angular displacement of one (and therefore 
every) molecule about its major inertia axis as a function of time 
in a system set up to oscillate in almost a pure mode, showing 
predominantly the librational mode about this axis of frequency 
1.54 THz. 

360[ K,W / ~ " ' ~ "  

1 O0 200 300 400 
Temperature (K) 

Fig. 3. Variation of the total unit-cell volume with temperature. 
E: experiment (after Baharie & Pawley, 1982) extrapolated to 
the melting point of 353.3 K (Sherwood, 1983). W, K and M refer 
to the potential functions as given in Table 1. The values have 
been calculated at 1, 25, 50, 100, 150, 200, 250, 300 K, and then 
in steps of 25 to 500 K. The standard deviations associated with 
each point do not exceed the width of the line on the diagram. 
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angles, as we have seen above. The experimental 
results have been obtained with the latter description 
and, as this involves the fewer parameters, we use 
this description for the analysis of the variation of 
molecular orientation with temperature. This is shown 
in Fig. 5, which includes the experimental results 
tabulated by Baharie & Pawley (1982). W is better 
than K for only one Euler angle, but none of the 
potentials give rise to a good agreement with the 
experimental temperature variation. Again we see that 
the variation predicted by all the potentials is greater 
than observed, from which we must conclude that 
there is an important part of the potential function 
missing from those used, which would tend to stabilise 
the molecular orientation. Such a potential is most 
probably the quadrupole-quadrupole interaction 
associated with the w-electron system known to be 
of importance in naphthalene (Della Valle et al., 
1983). Inclusion of a quadrupole interaction in the 
present work would extend the calculation beyond 
our present computational capacity. 

From the simulation we can readily calculate the 
crystallographic mean-square translational (T) and 
librational (L) tensors. The diagonal values for L 
when expressed in the crystal orthogonal coordinate 
system are plotted in Fig. 6 for the three different 
potentials. These are given separately and to scale 
with the plots of the experimental results of Baharie 
& Pawley (1982) which are in the same coordinate 
system; this system corresponds quite closely to the 
principal-axis coordinate system. All the potentials 

/3 (o) 

agree with the experimental result that the largest 
libration amplitude takes place about the axis of 
greatest inertia. Detailed comparison with experiment 
is not easy to present, but a good picture can be got 

1,, M w 
1 1 2 ~ _ _ _ _ ~ -  ~ ~ ~ K  

100 200 K 

Fig. 5. The variation of the Euler angles which describe the 
molecular orientation as a function of temperature. The lettering 
corresponds to Fig. 3. The temperatures for the results are as 
for Fig. 4, and again the standard deviations are too small to be 
represented. 
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Fig. 4. Variation of the unit-cell constants with temperature for Fig. 6. The variation of the mean-square librational tensor prin- 
W. This figure corresponds to that presented by Baharie & Pawley cipal values with temperature, (a) W, (b) K and (c) M. L~t is 
(1982). The temperatures for the results are as for Fig. 3 up to the greatest everywhere, and L22 is the least except for K above 
300 K, and again the standard deviations are too small to be 250 K. The temperatures for the results are as for Fig. 4, and 
represented, again the standard deviations are too small to be represented. 
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from Fig. 7 which contains the variation of the traces 
of T and L with temperature for the three potentials 
and for experiment. From Fig. 7 we see that all the 
simulations predict a more rapid increase of ampli- 
tude with temperature for both T and L than is ob- 
served from the neutron powder diffraction studies, 
though it must be borne in mind that this discrepancy 
is at temperatures over twice the Debye temperature 
for this sytem which is approximately 100 K. 

0.06 i 

0.04 i . ~  

0"02 

100 200 K 

(a) 

7. Conc lus ion  

The best test which can now be made of the potential 
used in this simulation surely involves the study of 
the melting phenomenon. Although the potential 
functions have been shown to be inadequate as far 
as the fine detail of the molecular orientational 
behaviour is concerned, such considerations are likely 
to be less important when the thermal disordering 
approaches that required for melting. At this point 
the neglect of the quadrupole-quadrupole interac- 
tions would be more justifiable and a realistic simula- 
tion could be made even with these simple potentials. 
However, such a simulation would require much more 
computational resource than has been used here as 
the number of molecular interactions to be calculated 
would be considerably larger. The present calculation 
itself involves the determination of approximately 107 
interactions at each time step. Nevertheless, it is poss- 
ible that the peculiar behaviour of Fig. 3 is pointing 
towards the melting transition, and this is currently 
being investigated. 

We wish to thank the Science and Engineering 
Research Council (UK) for financial support in pur- 
chasing the DAP at Edinburgh which was used for 
these calculations, and the European Research Office 
of the US Army for the full support of one of us 
(RGD). 
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Fig. 7. The variation of the trace of (a) T and (b) L as a function 
of temperature for the three potential functions and for experi- 
ment. The lettering corresponds to Fig. 3. Again LI i is the greatest 
and /.,22 the least; T33 is the greatest and T22 the least as in the 
experimental result. The temperatures for the results are as for 
Fig. 4, and again the standard deviations are too small to be 
represented. 
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Abstract 

The conditional joint probability distribution of the phase 
q~ = ~0h +~--h given IF+l, IF-I is used in order to suggest 
coefficients for a Patterson synthesis for the determination 
of the positions of anomalous scatterers. A theoretical 
comparison with Rossmann's approach [Rossmann, M. G. 
(1981). Acta Cryst. 14, 383-388] is made. 

N 
f = f '  +i~' 

R +, ~o +, R- ,  ~0- 

N 
z X (f'~ "~ = +f~ ) 

j=l  
N 

c,= y. ( f I~ - f ' /~ ) / z  
j = l  

N 

j=l  

c - [ 1 - ( c~ + c~)12 
~ =  ~++~p- 

N 
F"= ~, f~' exp (2¢rihri) 

j = l  

F o 

Definitions 

number of atoms in the unit cell 
general expression for the atomic 
scattering factor; f '  and f "  are its 
real and imaginary parts 
structure factors of the reflexions 
h and - h ,  respectively 
normalized structure factor and 
phase of the reflextion h and -h ,  
respectively 

average value of I f ,  I 2 at a given I h] 

structure factor (imaginary com- 
ponent of anomalous dispersion 
omitted) 

0108-7673/84/030305-02501.50 

An important application of the observed anomalous scat- 
tering for the determination of the positions of the 
anomalous scatterers has been described by Rossmann 
(1961). In his approach a Patterson synthesis with (IF+I- 
IF-I) ~ coefficients is used which will produce peaks at the 
ends of vectors that relate anomalous scatterers. The 'best' 
ad hoc Patterson synthesis (having IF"] 2 coefficients) is not 
available from one-wavelength techniques: thus Ross- 
mann's  coefficients can be considered a useful approxima- 
tion of the 'best' coefficients. The approximation is good if 
the Petsko (1976) approximation holds (see Fig. 1): 

l:l=~IF÷l +IF-l). (1) 

Indeed, if we replace (1) in 

IFOV _- ½[i f÷l 2 + If-I 2] -IF-I 2, (2) 

(3) is obtained: 

IF"12---~(lF÷l-lF-I)2. (3) 

Relation (1) holds if • is small enough, that is to say, if 
t! -I- IF I is small compared with IF land IF-I. Such conditions 

are not always fulfilled, especially if: (a) synchrotron radi- 
ation is used; indeed the anomalous components of the 

Fig. 1. Argand diagram in the case of anomalous scattering. 
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